Working with Conda Environment
Overview
Teaching: 20 min
Exercises: 0 minQuestions
How to create personal conda environment in SuperPOD
Objectives
Create Conda environment for AI&ML Application
2. Conda Environment
- Beside Spack module manager installed in SuperPOD, you can also use Conda for your own package manager.
- In many cases, you want to use Conda environment for many AI&ML application, just like you do in M3
- First thing first, just load the conda module installed:
$ module load conda
$ conda env list
# conda environments:
#
base                     /hpc/mp/apps/conda
Create conda environment for Tensorflow with GPUs support
Next, let’s create a conda environment for Tensorflow 2.9, here are the steps:
(1) Request a compute node with 1 GPU
Make sure you have your own allocation name, in this case tuev_oitrts_workshop_0001 was allocated via SMU ColdFront HPC Management
$ srun -A tuev_oitrts_workshop_0001 -N1 -G1 -c10 --mem=64G --time=12:00:00 --pty $SHELL
(2) Load cuda and cudnn module for GPU support
$ module load conda gcc/13
$ module load cuda/12
$ module load cudnn/8
(3) Create Tensorflow environment with your prefered version of python, here let’s use TF 2.17 with python 3.10
$ conda create --prefix ~/tensorflow_2.17 python=3.10 pip --y
The conda environment named tensorflow_2.17 is created on your home directory
(4) Activate the conda environment and Install Tensorflow 2.17.1 (or your prefered TF version)
$ conda activate ~/tensorflow_2.17/  
$ pip install tensorflow==2.17.1
Install ipkernel and create the kernel for Notebook
$ pip install ipykernel
$ python3 -m ipykernel install --user --name tensorflow_2.17 --display-name TensorflowGPU2.17
(5) Once installation done, check if the conda environment is able to enable the GPU
$  python
>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
Usage of conda environment manager is no difference compared to running in M3.
Create conda environment for Pytorch with GPUs support
Similar to Tensorflow, one can create conda environment for Pytorch with GPUs support.
Following is the brief steps (3) to (5) to create the env and install Pytorch after requesting a node and load the libraries
$ module purge
$ module load conda gcc/11 cuda/11 cudnn
$ conda create --prefix ~/pytorch_2.5.1 pip --y
$ conda activate ~/pytorch_2.5.1
$ conda install pytorch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1  pytorch-cuda=11.8 -c pytorch -c nvidia
$ python
>>> import torch 
>>> torch.cuda.is_available()
True
>>> torch.cuda.device_count()
1
Key Points
Conda environment